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SUMMARY

Genetic perturbations of cortical development can lead to neurodevelopmental disease, including autism
spectrum disorder (ASD). To identify genomic regions crucial to corticogenesis, we mapped the activity of
gene-regulatory elements generating a single-cell atlas of gene expression and chromatin accessibility
both independently and jointly. This revealed waves of gene regulation by key transcription factors (TFs)
across a nearly continuous differentiation trajectory, distinguished the expression programs of glial lineages,
and identified lineage-determining TFs that exhibited strong correlation between linked gene-regulatory el-
ements and expression levels. These highly connected genes adopted an active chromatin state in
early differentiating cells, consistent with lineage commitment. Base-pair-resolution neural network models
identified strong cell-type-specific enrichment of noncoding mutations predicted to be disruptive in a
cohort of ASD individuals and identified frequently disrupted TF binding sites. This approach illustrates
how cell-type-specific mapping can provide insights into the programs governing human development
and disease.

INTRODUCTION

Dynamic changes in activity of cis-regulatory DNA elements,
driven by changes in transcription factor (TF) binding, underlie
phenotypic transformations during development (Buenrostro
et al., 2018; Stergachis et al., 2013). Single-cell methods for
measuring chromatin accessibility have emerged as a sensitive
probe for this activity and, combined with tools to measure sin-
gle-cell transcriptomes, have the potential to decipher how com-
binations of TFs drive gene expression programs (Kelsey et al.,
2017; Klemm et al., 2019). Quantifying the dynamic activity of
regulatory elements also enables the inference of the time point
or cell type wherein disease-associated genetic variation im-

pacts development. For instance, it is still unknown how genetic
variants associated with autism spectrum disorder (ASD) inter-
fere with the genetic programs underlying the development of
the cerebral cortex (Rubenstein, 2011; Zhou et al., 2019).
Corticogenesis is a dynamic, highly regulated process charac-

terized by the expansion of apical and basal radial glia (RG) and
intermediate progenitors in the ventricular and subventricular
zones (VZ, SVZ), the inside-out generation of glutamatergic neu-
rons, and the differentiation of astrocytes and oligodendrocytes
(Greig et al., 2013; Molnár et al., 2019; Silbereis et al., 2016). Cell
types derived outside of the dorsal forebrain, including
GABAergic neurons, microglia, and some oligodendrocytes,
also migrate and integrate into the cortex (Wonders and
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Anderson, 2006). Resolving gene-regulatory dynamics associ-
ated with these developmental trajectories requires investigation
of both chromatin and gene expression states at single-cell
resolution.

Tomap the gene-regulatory logic of human corticogenesis, we
generated single-cell chromatin accessibility and RNA expres-
sion profiles fromhuman fetal cortical samples spanning 8weeks
during mid-gestation. These paired maps revealed a class of
genes with comparatively large numbers of nearby putative en-
hancers whose accessibility was strongly predictive of gene
expression. These genes with predictive chromatin (GPCs) are
frequently TFs, andwe observed that their local accessibility pre-
cedes lineage-specific gene expression in cycling progenitors.
We validated these findings using single-cell accessibility and
expression profiles derived from the same cell (multiomics).
We defined a developmental trajectory for cortical glutamatergic
neurons, revealing a continuous progression of TF motif activ-
ities associated with neuronal specification and migration, and
explored the co-dependencies in TF motif accessibility along
this trajectory. In addition, we characterized the lineage potential
of glial progenitors and provided evidence for two distinct astro-
cyte precursor subtypes. Finally, we trained a deep-learning
model to infer base-pair-resolved, cell-type-specific chromatin
accessibility profiles fromDNA sequence. Thesemodels allowed
prediction of the potential impact of genetic variants on the cell-
type-specific chromatin landscape and prioritized rare de novo
genetic variants associated with ASD, demonstrating the ability
to map disease risk with single-cell and single-base resolution
during cortical development.

RESULTS

A single-cell regulatory atlas of the developing human
cerebral cortex
To capture cellular heterogeneity in the cerebral cortex, we
created a gene-regulatory atlas using the Chromium platform
(10x Genomics) to generate single-cell assay for transposase-
accessible chromatin with sequencing (scATAC-seq) and sin-
gle-cell RNA sequencing (scRNA-seq) libraries from four primary
samples at post-conceptional week (PCW) 16, PCW20, PCW21,
and PCW24 (Figure 1A). Overall, we obtained 57,868 single-cell
transcriptomes and 31,304 single-cell epigenomes after quality
control and filtering (Table S1; Figures S1A–S1H). Consistent
with previous studies (Fietz et al., 2010; Hansen et al., 2010;
Kang et al., 2011; Pollen et al., 2015; Trevino et al., 2020),
CTIP2+ cells were present in the cortical plate (CP) and SOX9+

cells in the VZ, SVZ, and outer SVZ (oSVZ; Figures 1B and
S1I), while the GFAP+ scaffolding spanned the neocortex at
PCW17 and PCW21 (Figures 1C and S1J). The proliferation
marker KI67 colocalized with both GFAP+ cells and with
PPP1R17+ intermediate progenitor cells (IPCs) in the SVZ and
oSVZ (Figures 1C and S1J).

To assess global similarities and differences between individ-
ual cells, we performed unsupervised analyses, including dimen-
sion reduction using uniform manifold approximation and pro-
jection (UMAP) and clustering. For scATAC-seq, we employed
an iterative approach (Granja et al., 2019) to obtain a low-dimen-
sional embedding, cell clustering, and a consensus set of

657,930 accessible peaks representing potential cis-regulatory
elements (CREs; STAR Methods). The structure of the RNA
and chromatin representations were similar, with variation
related to gestational time (Figure 1D) and cell types. Performing
both assays on the same samples enabled us to dissect comple-
mentary aspects of gene regulation, including the relationship
between gene expression (scRNA-seq) and chromatin accessi-
bility-based gene activity score (scATAC-seq)—a metric defined
by the aggregate local chromatin accessibility of genes (here-
after ‘‘gene activity score’’; STAR Methods) (Pliner et al., 2018)
as well as aggregate TF motif activity scores (Schep et al.,
2017). Corticogenesis TFs such as SOX9, EOMES, NEUROD2,
and DLX2 showed strong cluster-specific enrichments in
these three metrics (Figure 1E) consistent with their ascribed
roles in RG, IPCs, cortical glutamatergic neurons (GluN), and
GABAergic neurons (interneuron; IN), respectively.
We next called clusters in both datasets (Figure 1F; STAR

Methods) and annotated these clusters using gene expression
and gene activities of known markers (Lui et al., 2011; McCon-
nell, 1995; Nowakowski et al., 2016, 2017; Polioudakis et al.,
2019; Pollen et al., 2015; Thomsen et al., 2016) (Figures 1G–H,
S2A, and S2B; Table S1; STAR Methods). In scRNA-seq, we
observed a cluster of cycling cells (Cyc) expressing TOP2A
and KI67. We also found that RG, expressing SOX9 and HES1,
included both ventricular radial glia (vRG: FBXO32, CTGF) and
outer radial glia (oRG: MOXD1, HOPX), and these were sepa-
rated according to time (early RG, PCW16: NPY, FGFR3; late
RG, PCW20–24:CD9,GPX3). Cells in one scRNA-seq cluster ex-
pressed markers for truncated RG (tRG) and ependymal cells
(tRG: CRYAB, NR4A1, FOXJ1). We also identified a cluster ex-
pressing genes associated with both RGs and oligodendrocyte
lineage precursors (ASCL1, OLIG2, PDGFRA, EGFR). This clus-
ter, which we named multipotent glial progenitor cells (mGPC),
was different from the OPC and oligodendrocyte (OPC/Oligo)
cluster that expressed SOX10, NKX2.2, and MBP. Genes asso-
ciated with astrocyte identity (AQP4, APOE) were observed in
the mGPC cluster as well as in the late RG cluster. A large
domain was composed of neuronal IPC (EOMES, PPP1R17,
NEUROG1) and GluN (BCL11B/CTIP2, SATB2, and SLC17A7/
VGLUT1). Among the GluN clusters, we found cells expressing
subplate markers (SP: NR4A2, CRYM). We also identified
distinct clusters of IN expressing DLX2 and GAD2—one of
them expressed markers associated with medial ganglionic
eminence (MGE: LHX6, SST) and the other expressed markers
associated with both caudal ganglionic eminence and pallial-
subpallial boundary (CGE: SP8, NR2F2; PSB: MEIS2, ETV1). In
addition, we observed clusters of microglia (MG: AIF1, CCL3),
endothelial cells (EC: CLDN5, PECAM1), pericytes (Peric:
FOXC2, PDGFRB), leptomeningeal cells (VLMC: COL1A1,
LUM), and red blood cells (RBC: HEMGN). Many of the above
markers exhibited dynamic gene activity scores in correspond-
ing clusters in scATAC-seq space (Figure 1H). While most clus-
ters had cells representing all time points, some were strongly
biased for earlier or later stages (e.g., mGPCs and tRGs; Fig-
ure S2C). To further corroborate cell-type identities and gesta-
tional time, we projected two previously published scRNA-seq
datasets from human cortex into our scRNA-seq manifold (Bha-
duri et al., 2020; Polioudakis et al., 2019). We computed Jaccard
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indices of correspondence and observed high agreement be-
tween cell types, cell-cycle phase, and gestational times in our
data and the computationally matched independent annotation
(Figures S3A–S3G).
We integrated the derived gene activity scores with gene

expression levels using canonical correlation analysis (CCA) to
match cell data from each modality to the nearest neighbors in

the other data representation (Figure 2A) (Stuart et al., 2019).
Cluster annotations of matched cells were consistent, except
for the cycling progenitor cluster in scRNA-seq, which did not
directly map to cells in the chromatin landscape (Figures 2B,
S3H, and S3I). Using pseudo-bulk aggregates of these matched
annotations, we applied a correlation-based approach that links
gene-distal CRE accessibility to gene expression (Corces et al.,
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Figure 1. A single-cell epigenomic atlas of the human cerebral cortex
(A) Schematic of time, profiling methods, and cell types.

(B) Immunohistochemistry for SOX9 and CTIP2 at PCW17. VZ, ventricular zone; SVZ, subventricular zone; IFL, inner fiber layer; oSVZ, outer SVZ; OFL, outer fiber

layer; SP, subplate; CP, cortical plate. This image was generated by automatic stitching of individual images.

(C) Immunohistochemistry for GFAP, KI67, and PPP1R17 at PCW17. This image was generated by automatic stitching of individual images.

(D) UMAP based on gene expression (left) and peak accessibility (right). Cells colored according to time.

(E) Multimodal profiling of SOX9, EOMES, NEUROD2, and DLX2 including gene expression (scRNA-seq), gene activity scores, and TF motif activity

(scATAC-seq).

(F) UMAP of cells colored by cluster. RG, radial glia; Cyc, cycling progenitors; tRG, truncated radial glia, mGPC, multipotent glial progenitor cell; OPC/Oligo,

oligodendrocyte progenitor cell/oligodendrocyte; nIPC, neuronal intermediate progenitor cell; GluN, glutamatergic neuron; CGE IN, caudal ganglionic eminence

interneuron; MGE IN, medial ganglionic eminence interneuron; EC, endothelial cell; MG, microglia; Peric., Pericytes

(G) Dotplot showing the cells expressing selected markers across scRNA-seq clusters.

(H) Dotplot showing marker gene activity scores derived across scATAC-seq clusters.

Scale bars, 500 mm (B, C), 100 mm (insets B, C).
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2018; Ma et al., 2020; Trevino et al., 2020), identifying 64,878
CRE-gene pairs that represent potential enhancer-gene interac-
tions (Table S2). In this analysis, a gene was linked to amedian of
five CREs, and linked CREs were more conserved than unlinked
elements (Figure S3J, Wilcoxon rank-sum test p < 2.2 3 10!16)
and more likely to be supported by cell-type-specific three-
dimensional (3D) interactions from a recently published pro-
moter-centric chromosome conformation capture dataset
(Song et al., 2020) (Figures S3K–S3M). Co-variation of CRE
accessibility and gene expression distinguished the identified
cell types in both scRNA-seq and scATAC-seq (Figure 2C). Clus-
tering the associated CRE accessibility revealed particularly high
variability across clusters corresponding to glial cell populations,
corroborated the distinctiveness of IN clusters, and indicated dy-
namic patterns of gene regulation across GluN clusters.
We then identified genes whose expression could be well pre-

dicted from local single chromatin accessibility by ranking gene
activity-expression correlations. Genes with the highest correla-
tion included SOX2 and HES1, and these genes were linked to
greater numbers of putative enhancers. We hypothesized that
these comprised a class of highly regulated genes that play a
driving role in establishing cell identities in the developing cortex
and defined a set of 185 genes with predictive chromatin (GPCs;
genes in the top decile of gene activity-expression correlations,
linked to >10 CREs) (Table S2; Figure 2D). This gene set was
strongly enriched for transcription regulator activity and DNA-
binding TF activity (Figure 2E).
To validate these inferences, we profiled scATAC-seq and

scRNA-seq data from the same cells in PCW21 human cortex
(multiome) (Figure 2F). Filtering across both data modalities
resulted in 8,981 cells with high-quality transcriptome and
epigenome profiles (Table S2; Figures S3N–S3T). We projected
multiomic scATAC-seq and scRNA-seq profiles into the corre-
sponding individually generated landscapes and confirmed
that our cell-type annotations were well represented in the joint
data (Figure 2G). Applying our CRE-gene linking approach to
the true cell-to-cell matches, we found that 40,181 inferred
peak-gene linkages (53%) were observed from this single time
point measurement and an additional 23,849 were identified
(Figure 2H; Table S2), demonstrating that most inferred CRE-
gene interactions were observed in this joint dataset. Similarly,
we applied CCA to multiome data, where the correct cell assign-
ments are known. The inferences were generally validated by the

true clusters, and this agreement was increased by assigning
clusters based on 50 nearest neighbors in CCA space, rather
than the single closest neighbor (Figures S4A and S4B). In addi-
tion, we found a strong concordance in GPC activity-expression
correlations of in silico-linked singleome cells versus multiome
cells (Figure 2I). GPCs are thus also readily apparent in this joint
dataset, underlining the correspondence between their local
accessibility and their transcription within the same cell.

Continuous trajectories of gene regulation across
cortical neuron differentiation
GluN are born in a specific sequence during development.
Although several key factors controlling their fate have been
described (Greig et al., 2013), the logic that governs their spec-
ification, migration, and maturation has not been resolved in hu-
man development. To define a trajectory of GluN development,
we annotated each cell in associated clusters with pseudotime
values. This annotation was derived using an algorithm based
on diffusion through cell-similarity networks derived from RNA
velocity (Bergen et al., 2020; La Manno et al., 2018) (Figures 3A
and S4C–S4F). Notably, the algorithm rooted the trajectory in
the cluster of cycling cells (Figure S4D). To test how the architec-
ture of the cortex mapped onto this trajectory, we next projected
an independent scRNA-seq data comprising adult cortical neu-
rons (Hodge et al., 2019) into the developmental landscape and
identified the nearest neighbor cell for each adult scRNA-seq
profile (Figure S4G). Adult GluN projected preferentially into the
neighborhoods of cells annotated with later pseudotimes, and
pseudotime was significantly associated with the annotated
layer of adult cells (one-sided Wilcoxon rank-sum test p <
9.63 10!15; Figure S4H). As expected, we also observed signif-
icant association of earlier and later time points with deep and
superficial adult cortical layers (one-sided Fisher’s exact test
p < 2.73 10!124; Figure S4I). Whenwe compared the expression
levels in migrating neurons from the early gestational time point
(PCW16) to those from later time points (PCW20–PCW24), we
observed increased expression of LIMCH1, RUNX1, SNCB,
and DOK5 and decreased expression of the AP-1 TF family
(JUN, FOS), heat shock factors HSPA1A/B and DUSP1 (Figures
S4J and S4K; Table S3). Overall, we found surprisingly few differ-
entially expressed genes previously implicated in neurogenesis,
suggesting a considerable degree of gene expression and regu-
latory variability could be associated with pseudotime rather

Figure 2. Integrative and multiomic gene regulatory dynamics in the human cortex
(A) Generation and integration of singleome scATAC-seq and scRNA-seq data. CCA, canonical correlation analysis.

(B) UMAPs of scRNA-seq and scATAC-seq cells colored by cluster assignment of matched cells.

(C) Heatmap showing chromatin accessibility and gene expression of 64,878 significantly linked CRE-gene pairs. Shown are side-by-side heatmaps in which one

row represents a pair of one CRE and one linked gene). Each CRE can be linked to multiple genes, and each gene can be linked to multiple CREs. Hence, each

gene and each CRE can be represented by multiple rows in the corresponding heatmap. Pairs (rows) were clustered using k-means clustering (k = 20). For

visualization, 10,000 rows were randomly sampled. Columns represent 200 pseudobulk samples, which have been annotated using the majority RNA cluster,

ATAC cluster, and time of all cells in the pseudobulk.

(D) Correlation between single-cell gene expression and chromatin-derived gene activity scores (GA), and the number of linked CREs per gene. TFs are labeled.

(E) GO enrichment analysis of the 185 genes with GPCs in (D).

(F) Generation of scATAC-seq and scRNA-seq data from the same cells (multiome data).

(G) Projection of multiome scATAC-seq into singleome scATAC-seq UMAP space, and multiome scRNA-seq into singleome scRNA-seq UMAP space. Cell

coloring corresponds to multiome cluster assignment, and gray cells show the singleome manifold onto which multiome cells have been projected.

(H) Venn diagram showing overlap of CRE-gene linkages identified in singleome versus multiome data.

(I) Correlation showing the correspondence between predictive chromatin in singleome versus multiome data.
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than gestational time. We therefore decided to investigate the
regulatory dynamics along the pseudotime axis.
To connect expression trajectories to the accessibility dy-

namics of regulatory elements, we transferred pseudotime
values from RNA cells to their nearest ATAC cell neighbors, con-
firming this produced a smooth continuum of pseudotime in the
chromatin manifold (Figure 3B). By applying our correlation-
based CRE-to-gene linking approach to the glutamatergic
neuronal lineage, we identified 13,989 dynamic interactions
across pseudotime and grouped these into five clusters (Fig-
ure 3C; Table S3). Linked genes active early in pseudotime ex-
hibited gene ontology (GO) enrichments for cell division and neu-
ral precursor proliferation, whereas later interactions were
associated with morphogenesis, migration, and maturation (Fig-
ure 3D). Interestingly, genes encoding TFs andDNA-binding pro-
teins were particularly enriched in intermediate interactions,
while genes implicated in ASD susceptibility (Abrahams et al.,
2013) were more likely to be linked later in pseudotime. To nomi-
nate TFs that may control these programs, we identified motifs
that were enriched in the different clusters of linked regulatory el-
ements. Motifs enriched in interactions early in the trajectory
included ZNF740, KLF16, SP1/2, and ASCL1 (Figure 3E).
Conversely, interaction clusters associated with intermediate
and late pseudotime were associated with motifs of neuronal
TFs (NEUROD1/2, NEUROG1, MEF2C).
We next characterized the TF-driven regulatory dynamics of

neurogenesis over pseudotime. To mitigate correlation biases
due to sequence similarity betweenmotifs in this analysis, we uti-
lized a resource of previously disambiguated clusters of TF mo-
tifs (Vierstra et al., 2020). We then linked specific TF genes to
thesemotif clusters by correlating TF expression with the acces-
sibility-derived motif activity scores, resulting in pairings of 31
TFs and 24 motif clusters (STAR Methods). We observed syn-
chronized TF expression and motif activity for dynamic regula-
tors along developmental pseudotime, starting with PAX6,
SOX2/6/9, GLI3, and ASCL1 motifs, followed by intermediate
stage factor motifs (EOMES, NFIA, NFIB, NEUROD1), and finally
late-stage motifs (NEUROD2, BHLHE22, MEF2C; Figure 3F).
Together, these data describe cohesive, sequential waves of
motif activation during corticogenesis that are consistent across
gestational time points.
To understand how TFs are coordinated during corticogene-

sis, we computed the genome-wide synergy and correlation pat-
terns of motif family accessibility (Figures 3G and 3H; STAR
Methods) (Schep et al., 2017). We found three broad classes of

motifs that associated with accessibility and TF expression
over pseudotime (Figures 3G–3I): (1) early-activity motifs exhib-
iting moderate synergies (SOX, GLI, PAX), (2) intermediate activ-
ity motifs (NFI, TBX/EOMES) that are highly synergetic within
their class, and (3) late-activity motifs that are less coopera-
tive and generally appear to operate more independently
(NEUROD2/BHLHE22, MEF2). These findings suggest a higher
degree of TF motif coordination early in neurogenesis and regu-
lation of maturation by a smaller set of more independent TFs.

Clustering approach to link gene expression programs
to cell-fate decisions
We observed extensive heterogeneity in glial populations, corre-
sponding to distinct yet partially overlapping expression pro-
grams in the identified clusters (Figures S5A and S5B). We adop-
ted an analysis to identify modules of co-expressed genes using
fuzzy c-means clustering (STAR Methods; Figures 4A and S5C;
Table S4), allowing cells to be annotated with module activities,
and for genes to be shared between multiple modules (Figures
S5C and S5D; Table S4), enabling analysis of how cells may
progress from one module to another. We projected these cell
loadings into a low-dimensional representation of differentiation
(Figure 4A, bottom). The structure of this embedding and the un-
derlying module assignments was stable to fuzzy clustering pa-
rameters (STAR Methods).
To understand the biological basis of these gene modules, we

examined their expression across cell clusters, developmental
stage, and pseudotime (Figure 4B), which was rooted in cycling
(‘‘Cyc’’) cells and correlated with time (Figure S5E; STAR
Methods). Glial maturation genes FOXJ1, AQP4, and MBP,
which are markers for ciliated ependymal cells, astroglia, and ol-
igodendrocytes, respectively (Barbarese et al., 1988; Jacquet
et al., 2009; Zhang et al., 2016), were expressed in late-pseudo-
time cells and assigned to modules m5, m2, and m7. In contrast,
the expression of genes associated with cell division and pro-
genitors, such as TOP2A, NR2F1, and NFIC, peaked early in
pseudotime and were assigned to modules m10, m6, and m3
(Figures 4C and S5F). Some modules (m6, m8) spanned many
samples and stages, indicative of sustained expression pro-
grams, while others were restricted (m5, m14; Figures 4B, 4D,
and S5G). Modules exhibited distinct GO enrichments, including
‘‘cation andmetal ion binding’’ inm6, whichmay be related to the
role of human astrocytes in metal homeostasis (Vasile et al.,
2017; Zhang et al., 2016) and disease (Figures S5H and S5I).
Module m5, comprising FOXJ1+ cells, was enriched for dynein

Figure 3. Molecular signatures of cortical glutamatergic neurons
(A) UMAP of scRNA-seq cells highlighting the GluN trajectory and RNA-velocity derived pseudotime.

(B) UMAP of scATAC-seq with transferred pseudotime annotation.

(C) Heatmap showing chromatin accessibility and gene expression of 13,989 significantly linked CRE-gene pairs (columns: left, CRE accessibility; right, linked

gene expression) across 363 pseudobulk samples aggregated along pseudotime bins in the GluN trajectory. Interactions (rows) were clustered using k-means

clustering (k = 5).

(D) Gene set enrichment analysis of genes represented in the five interaction clusters.

(E) Enrichment of TF motifs in peaks represented in the five interaction clusters. Color represents odds ratios; size represents the –log10 (p value).

(F) Heatmaps showing Z score normalized expression (left) and motif activity (right) of TFs in 363 pseudobulk samples aggregated along pseudotime bins. Rows

show 31 dynamic TFs associated with 24 motif clusters.

(G) TF motif correlation coefficients (upper) and synergy Z scores (lower) of the 24 motif clusters in (F).

(H) Correlation coefficients of TF motif cluster chromatin activity and annotated gene expression.

(I) Scatterplot showing aggregate gene expression pseudotime versus mean motif synergy. Point colors denote the cluster assignments in (G).
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Figure 4. Regulatory logic of glial cell specification
(A) Schematic illustrating the expression-based clustering and reprojection of glial cells. Points in the bottom panel correspond to pseudobulk aggregates of

50 cells.

(B) Heatmap of module expression across pseudobulk aggregates, showing variation by cluster, sample age, and pseudotime.

(C) Heatmap showing the expression of selected genes across the same pseudobulks.

(D) Mean scaled expression in the low-dimensional UMAP embedding of selected gene modules. Figure S5G shows all modules.

(E) Projection of module centroids into UMAP space. Pseudobulk samples are colored by pseudotime. Module overlap is shown by links between centroids and

was computed by thresholding the pairwise Jaccard index at >0.2.

(F) Module membership and expression values for ASCL1, HES4, and OLIG1.

(G) Module membership and expression values for EOMES, AQP4, and MBP.

(H) Module membership and expression values for ASCL1/OLIG1 and EGFR.

(I) Immunohistochemistry showing expression and colocalization (white arrowheads) of ASCL1, OLIG2, and EGFR in cells of the SVZ, oSVZ, outer and inner fiber

layers (OFL, IFL), and SP.

(J) Module membership and expression values for the oligodendrocyte progenitor marker PDGFRA and the astrocyte-associated gene SPARCL1.

(K) Immunohistochemistry showing expression and colocalization (white arrowheads) of SPARCL1 and PDGFRA in cells of the SVZ, oSVZ, and outer and inner

fiber layers (OFL, IFL).

Scale bars, 50 mm (J and K).
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binding andmicrotubule activity, consistent with the role in circu-
lating cerebrospinal fluid (Ransom, 2012). Immunohistochem-
istry revealed that TFAP2C, which associated with module m6,
was expressed in VZ and SVZ (Figures S6A and S6B). Similarly,
PBXIP1, which was associated with m2, was expressed in RG in
the VZ and SVZ but not in more mature CP astrocytes (Figures
S6C and S6D). CRYAB, associated with m9, was expressed in
tRG in the VZ, as described (Figures S6E and S6F) (Nowakowski
et al., 2016).
Our clustering and reprojection approach enabled us to

compute the degree of gene overlap between modules, which
provided a measure of module similarity across our glial land-
scape (Figure S6G). To visualize these relationships, we
computed the weighted average of module gene expression
across pseudobulk aggregates and plotted these ‘‘module
centroids’’ and their connectivity in the embedding, along
with pseudobulks and their pseudotime values (Figure 4E).
Investigation of module memberships in this representation re-
vealed three broad programs emanating from the cycling clus-
ter: (1) an ASCL1+ program associated with m3 and m8 and
terminating in EOMES+ nIPCs; (2) a HES4+ program associ-
ated with module m6 and terminating in astrocytes and epen-
dymal cells; and (3) an ASCL1+/OLIG1+ program associated
with m12, m1, and m4, branching into two endpoints (Figures
4F and 4G). The ASCL1+/OLIG1+ program was of particular in-
terest, as it corresponded to the mGPC cluster of cells, which
expressed markers associated with both astroglia (GFAP,
HOPX, EGFR, ASCL1) and oligodendrocyte progenitors
(OLIG2, PDGFRA), suggesting a common multipotent glial pro-
genitor (Figures 4H and 4J). Immunohistochemistry revealed
that ASCL1, OLIG2, and EGFR were often colocalized in the
SVZ/IFL, oSVZ/OFL, and SP (Figures 4I, S7A, and S7B). If
generated from a common glial progenitor, astrocyte and
oligodendrocyte precursors might also share expression of
markers associated with more differentiated states. We
found that PDGFRA and OLIG2, markers associated with
oligodendrocyte progenitors, and SPARCL1, which is a marker
associated with mature astrocyte identity (Zhang et al., 2016),
colocalized in the SVZ/IFL and oSVZ/OFL (Figures 4K and
S7C–S7F). We speculate that a common multipotent glial pro-
genitor, competent to differentiate into both astrocytes and
oligodendrocytes, could explain this substantial overlap of
expression programs.

Chromatin and gene expression profiles identify two
astrocyte precursor populations
Human cortical astrocytes are larger, more morphologically
complex (Oberheim et al., 2009; Zhang et al., 2016), and likely
more diverse than those of other mammals (Vasile et al., 2017).
However, the steps underlying the diversification of human as-
trocytes are unknown. We observed three interconnected fuzzy
gene modules, largely derived from PCW24 tissue, expressing
AQP4, TNC, ALDH2, and APOE, and other genes specifically
expressed in astrocytes (m2, m13, m14) (Sloan et al., 2017;
Wiese et al., 2012; Zhang et al., 2016) (Figures 5A, S8A, and
S8B). To test whether these transcriptionally related yet distinct
subpopulations associated with different regulatory factors, we
computed differential motif enrichments between enhancers

linked to genes in m13 versus m14. We found that the basic he-
lix-loop-helix (bHLH) factor motifs ASCL1 and NHLH1 were
enriched in module m13, while SOX21 was enriched in m14 (Fig-
ure 5B). In our glial cells, the accessibility of ASCL1 and NHLH1
motifs correlated best with the gene expression of bHLH factor
OLIG1 (Spearman rho = 0.34 and 0.36, respectively), and we
have previously nominated SOX21 as a potential regulator of
astrocyte maturation in cortical organoids (Trevino et al., 2020).
Thus, two distinct astrocyte-like expression patterns could
be distinguished by chromatin accessibility of OLIG1 versus
SOX21 motifs.
To examine the differences between cells expressing these

modules in more detail, we computed differential gene expres-
sion between the astrocytic cell clusters A1-HES and A2-OLIG,
corresponding to expression of modules m2/14 and m13,
respectively (Figures 5C and 5D; Table S5). Cluster A1-HES ex-
hibited significantly higher expression of HES4 and CAV2, while
A2-OLIG was characterized by increased SPARCL1, ID3, and
IGFBP7 expression (Figures 5D and S8C). To determine whether
these distinct astrocyte precursor subtypes were due to the
sampling of different cortical areas, we used a recently published
scRNA-seq dataset (Bhaduri et al., 2020) (Figures 5E and S8D).
We found that gene sets attributed to our astrocytic classes
were expressed in distinct cell populations in this independent
dataset—an observation that could not be explained by differ-
ences in cortical area (Figure 5F). These developmental states
may correspond to adult subtypes, such as protoplasmic astro-
cytes, found throughout the gray matter of the cortex, fibrous as-
trocytes found in the white matter, or primate-specific interlam-
inar astrocytes, which populate layer 1 (Hodge et al., 2019;
Oberheim et al., 2009; Vasile et al., 2017).

Chromatin state links GPCs to lineage determination in
cycling cells
We next examined how the chromatin state of progenitor cells
could potentially affect the acquisition of expression programs
characteristic of more differentiated cell states. We therefore
focused on the heterogeneity among cells that expressed gene
modules strongly associated with cell-cycle signatures (Fig-
ure 6A; Pearson r = 0.89, 0.91, respectively). To link chromatin
accessibility to the glial-centric expression map, we projected
pseudobulk aggregates of 13,378 glial scATAC-seq cells into
our gene-module-derived manifold using accessibility-derived
gene activity scores. Consistent with our CCA cluster matching
analysis (Figures 2B, S3H, and S3I), pseudobulks comprised
mainly of cells from ATAC cluster c15 (OPC/Oligo) projected
into the oligodendrocyte endpoint of this map, cluster c10
(mGPC) data projected into the ASCL1+/OLIG2+ astrocyte
compartment, and cluster c9 (late RG) data projected into both
ependymal and HES4+ astrocyte endpoints (Figure 6B). How-
ever, while we did not observe a distinct cycling cluster in our
chromatin landscape, a subset of these ATAC-seq pseudobulk
samples projected into the cycling, early-pseudotime compart-
ment of the RNA-seq embedding. These samples partitioned
into three distinct branches defined by their scATAC-seq cluster
assignments (Figure 6C). We speculate that strong cell-cycle
signatures in RNA-seq may have diminished these distinctions
that are more evident in ATAC-seq data and that analyzing these
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separate branches might allow us to determine whether cycling
progenitors are poised toward distinct postmitotic fates.

To explore factors that influence these fate decisions, we iden-
tified genes specific to each branch based on their gene activity
scores (STAR Methods). We observed a strong overlap of these
genes with the set of GPCs, including HES1, RFX4, OLIG1,
OLIG2, NEUROD6, and EOMES. Overall, differential chromatin
activity in all three branches of cycling cells was enriched for
GPCs (Figure 6D). Each branch was enriched for at least one
bHLH GPC TF in the top five most unique genes (BHLHE40,
OLIG1,OLIG2,NEUROD6,NEUROD4) (Figure 6E). The similarity
of annotated motifs for these factors is consistent with the hy-
pothesis that they can compete for similar binding sites to drive
multiple distinct cell fates (Imayoshi et al., 2013; Zhou andAnder-
son, 2002). Together, these results suggest that differential chro-
matin activity as well as gene expression of GPCs are prominent

features that distinguish different types of cycling glial progeni-
tor cells.
We next wondered whether these GPCs were both highly

connected to dense collections of regulatory elements and
highly enriched for lineage-defining transcription factors. To
evaluate whether these links could be indicators of the even-
tual differentiation endpoint, and thus potentially drive differen-
tiation, we re-projected ATAC-seq pseudobulk samples from
A, B, and C cycling population branches by only using GPC-
associated chromatin signals. We observed that samples
moved forward in pseudotime to regions with distinct, more
mature expression states (Figure 6F), whereas reprojections
using random gene subsets or modules of genes moved
non-specifically toward the center of the manifold (Figure S8E).
This observation suggests that chromatin patterns linked to
GPC genes in these cycling cells already exhibit a signature

A

D E
F

B C

Figure 5. Astrocyte precursor heterogeneity
(A) Module membership and scaled gene expression of astrocyte-associated genes AQP4, TNC, ALDH2, and APOE

(B) Motif enrichments in GREs linked to module 13 genes relative to GREs linked to module 14.

(C) Reclustering of glial pseudobulk samples in fuzzy clustering embedding. AQP4 positive clusters are highlighted and defined as A1-HES and A2-OLIG.

(D) Differential gene expression between A1-HES and A2-OLIG clusters, calculated using DESeq2. A threshold of Benjamini-Hochberg corrected FDR of 1e!20

was used for visualization (blue)

(E) UMAP of astrocytes from a human fetal scRNA-seq dataset (Bhaduri et al., 2020), colored by cortical area.

(F) Mean scaled expression of genes in modules m13 and m2 (top) and the top 200 differential genes from D (bottom) in Bhaduri et al. (2020).
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of an advanced transcriptional cell state. Similarly, when we
projected the scRNA-seq data from the joint multiome dataset
into the module-based manifold, a fraction of cells projecting
to the cycling domain exhibited distinct accessibility signa-
tures of more differentiated cells from each branch (Figure 6G).
Based on these results, we propose that during corticogene-
sis, progenitors entering the cell cycle may be epigenetically
primed toward future cell fates and that this information is en-
coded specifically in GPCs, a set of genes with large numbers
of linked enhancers enriched for binding of lineage-
defining TFs.

Deep-learning models prioritize disruptive noncoding
mutations in ASD
We next used our atlas to interpret noncoding de novomutations
in ASD, using the Simons Simplex Collection catalog of over
200,000 such mutations in 1,902 families (An et al., 2018) (Table
S6). Naive overlap of mutations with cluster-specific scATAC-
seq peaks produced no enrichment for mutations in ASD individ-
uals relative to those in unaffected siblings (odds ratio [OR] =
1.02 for GluN6 cluster, Fisher’s exact test p = 1.0; Figure S8F),
indicating that peak-level annotations alone are insufficient to
resolve a sparse set of causal mutations.

Deep-learning models have proven useful for prioritizing dis-
ease-relevant noncoding genetic variants based on their pre-
dicted regulatory impact (Kelley et al., 2016, 2018; Zhou and
Troyanskaya, 2015). We therefore trained convolutional neural
networks, based on the recent BPNet architecture, to learn
models that could predict base-resolution, pseudo-bulk chro-
matin accessibility profiles for each of our scATAC-seq-derived
cell types from genomic sequence (Figure 7A; STAR Methods)
(Avsec et al., 2020), using peak regions and genomic back-
ground, matched for GC content and motif density to correct
for potential sequence composition biases (Figure S8G). The
models showed high and stable correlation between total pre-
dicted and observed Tn5 insertion count coverage across all
peak regions in held-out chromosomes across 5-folds of
cross-validated models (e.g., GluN6, mean Spearman rho =
0.58; Figure S8H; Table S6). To predict cell-context-specific
effects of a candidate mutation on chromatin accessibility, we
used our cluster-specific BPNet models to compute local
disruption score based on the allelic fold-change in predicted
counts. For each cluster, we computed the enrichment of high-
effect-size mutations in cases versus controls. We observed sig-
nificant enrichment of ASD-related mutations for GluN2/3/4/6/9
(>1.2-fold), which is in line with previous studies (Gandal et al.,

A

D
E F G

B C

Figure 6. Chromatin state links GPCs to cell fates
(A) Pearson correlation of a cell-cycle signature (MSigDB) with module expression signature across pseudobulks.

(B) Schematic of ATAC-seq projection into fuzzy clustering embedding.

(C) Projection of ATAC-seq pseudobulks (each comprising 50 cells) into Cyc cluster and in the neighborhood of cycling-associated modules.

(D) Heatmap showing the 50most uniquely active genes in branches A, B, and C. Gene activities are row scaled. Orange bars denote GPC labeling. The p value of

a Kolmogorov-Smirnov test for enrichment of GPCs in differential, branch-specific genes are shown.

(E) Dynamics of GPC motifs and gene expression across three branches of cycling cells. Heatmaps represent enrichment of GPC TF motifs (left) and gene

expression levels (right) in branch aggregates.

(F) Reprojection of branches A, B, and C using only chromatin accessibility associated with GPCs.

(G) Projection of multiome scRNA-seq data into fuzzy clustering embedding. Cells (points) are colored by their mapped scATAC-seq cluster.
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D E

C

Figure 7. Disease association of gene regulatory elements
(A) Schematic of mutation prioritization pipeline.

(B) Cluster-specific BPNet enrichments visualized in scATAC UMAP.

(legend continued on next page)
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2018; Li et al., 2018a; Parikshak et al., 2013; Trevino et al., 2020;
Willsey et al., 2013). In addition, we found a strong association
with IN2/3/4, nIPC, late RG, and early RG clusters. The early
RG cluster showed the highest enrichment (OR = 1.909, excess
of 20, Fisher’s exact p < 0.05; Figure 7B; Table S6). We also
observed this approach of prioritizing causal disruptive muta-
tions was robust to threshold parameter selection (Figures S8I
and S8J). In contrast, BPNetmodels trained on human fetal heart
enhancers produced no enrichment (OR = 1.01, p = 1.0). Like-
wise, naive overlap enrichment with a set of fetal heart enhancers
also produced no enrichment for case mutations (OR = 0.97, p =
1.0; Figure 7C). Together, these results suggest that themutation
effect scores from base-pair-resolution predictive models
trained on chromatin accessibility landscapes in disease-rele-
vant cell states are critical for prioritizing putative causal noncod-
ing mutations.
The case and control mutations prioritized by the BPNet

models had similar conservation scores and similar distances
to the nearest transcription start site (TSS) (Figures S8K and
S8L), highlighting the challenge of identifying these causal mu-
tations by other means. Annotating the predicted high-effect-
size mutations with their nearest genes, we observed a 1.4-
fold enrichment for case mutations (n = 24) whose nearest
gene was in the SFARI database compared with the control
mutations (n = 17; Figure 7D). Next, we identified TF motifs
that overlapped and were predicted to be disrupted by all the
high-effect-size mutations from the BPNet models from all
positively enriched clusters (Figure 7E, Table S6). We found
that CTCF, which demarcates topological loop boundaries,
was one of the most frequently disrupted motifs in cases
versus controls. The NRF1 motif was another frequently disrup-
ted motif. NRF regulates the GABA receptor subunit GABRB1,
previously associated with disease (Li et al., 2018b). Other
frequently disrupted motif families in cases relative to controls
included E-box/bHLH family motifs (ASCL1, NEUROD6) and
homeobox family (PAX5) motifs, with more lineage-specific
effects. Homeobox proteins were also previously found to be
disrupted by variants in ASD (Amiri et al., 2018; Trevino
et al., 2020).
One highly disruptivemutation in our models was located in an

intron of NFIA (Figures 7F and S8M). Loss-of-function mutations
in this gene have previously been implicated in ASD (Iossifov
et al., 2014). The mutation was in a linked intronic enhancer for
the NFIA target gene. We observed that this enhancer was spe-
cifically accessible in different types of GluN clusters. The BPNet
model for GluN6 predicts the mutation disrupting an NFIA motif,

suggesting this mutationmay dysregulate the NFIA gene expres-
sion via auto-regulatory feedback.
In the nIPC cluster, the BPNet model predicted a disruptive de

novomutation in an intergenic enhancer linked to the neuropep-
tide Y gene (NPY) whose TSS was 90 kb away from the mutation
(Figure 7G). NPY is expressed in the subplate (Miller et al., 2014)
and in early RG in the mid-gestation human cortex (Figure S8N),
and genomic deletions of the NPY receptors have been associ-
ated with ASD (Ramanathan et al., 2004). The model further pre-
dicted this de novo mutation to disrupt a CTCF binding site at a
chromatin loop anchor, suggesting a potential mechanistic
impact on the chromatin architecture of this locus.

DISCUSSION

Here, we generate paired transcriptome and epigenome atlases
of corticogenesis during a critical period of cortical development
and describe how molecular interactions between DNA binding
factors and cis-regulatory elements regulate gene expression
programs. Furthermore, we describe how rare noncoding, de
novo mutations may act to disrupt this logic.
We identified a set of genes (GPCs), enriched for lineage-

defining TFs, whose local chromatin accessibility was predictive
of expression levels using signals derived from single cells,
possibly because of the large number of expression-linked en-
hancers. These linkages are evocative of other terms that have
been used for similar phenomena, including ‘‘super enhancers’’
(Parker et al., 2013; Whyte et al., 2013) and ‘‘super-interactive
promoters’’ (Song et al., 2020). Furthermore, chromatin accessi-
bility of GPCs was consistent with amore differentiated cell state
in some cycling progenitors. Recently, Ma et al. reported a phe-
nomenon by which accessibility at similarly defined domains of
regulatory chromatin delineate potential future cell states (Ma
et al., 2020). We speculate that the coordinated effect of many
enhancers on lineage-defining factors makes the expression of
those factors more resistant to perturbation. Highly cooperative
regulation of lineage-determining trans-acting factors may be a
general principle of fate determination, acting as a positive feed-
back mechanism once a key differentiation gene has been ex-
pressed. Effectively, once activated, these enhancers might
act as a ratchet, ensuring stable gene expression and preventing
backtracking along a differentiation landscape when facing
extrinsic or intrinsic perturbations.
Examining the trajectories of GluN migration and maturation,

we found a molecular program that was consistent across
8 weeks of gestation and was defined by a sequence of motifs.

(C) Bar plot showing the enrichment of cases versus controls using different prioritization methods. Colors represent the baseline of all cleaned SSC mutations

(gray), our scATAC-seq dataset (green), and a set of fetal heart enhancers (orange). * indicates a Fisher’s exact test OR = 1.909, p = 0.004.

(D) Bar plot showing the number of prioritized mutations whose nearest gene is a SFARI gene. Cases (24) versus controls (17) are compared to the total number of

prioritized mutations in cases (262) versus controls (232). Fisher’s exact test OR = 1.24, p = 0.154.

(E) Bar plot showing themotifs that were most frequently disrupted in case mutations relative to control mutations. The y axis denotes the excess of overlaps with

motifs by prioritized mutations in cases minus controls. The plot does not represent a statistical test.

(F) Example showing a disruptive case mutation in an intron of NFIA. The consensus logos show the importance of residues to predicted accessibility at the

mutation. A 100 bp window flanking the mutation is shown. The genome tracks indicate predicted per-base counts for ref (blue) and alt (red) alleles in a 1,000 bp

window flanking the mutation. The gene model around the mutation is shown along with tracks indicating the aggregate accessibility of scATAC-seq clusters at

the locus.

(G) Example showing a disruptive case mutation at the NPY locus, as above.

ll

Cell 184, 1–17, September 16, 2021 13

Please cite this article in press as: Trevino et al., Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-
cell resolution, Cell (2021), https://doi.org/10.1016/j.cell.2021.07.039

Resource



Differences in neuronal regulatory activity across pseudotime
were more pronounced than differences between develop-
mental stages. We further found distinct patterns of co-accessi-
bility and regulatory interactions between TFs early in pseudo-
time, whereas late TFs appeared to act more independently.

We also observed substantial sharing of TF-regulated gene
expression programs among glial cells, with substantial overlap
between gene modules containing canonical markers for astro-
cytes and oligodendrocytes. We validated the co-expression
of several of these genes in human cerebral cortex. We also pro-
vided evidence for the existence of two lineages of astrocyte-like
glial precursors (Vasile et al., 2017). Although glial modules were
broadly interconnected, we found that the chromatin activity of
GPCs in cycling cells was predictive of specific differentiated
states, suggesting that progenitors entering the cell cycle are
primed toward specific lineages.

Finally, our interpretable, cell-type-specific deep-learning
models that link DNA sequence to chromatin accessibility can
be used to assess the potential regulatory impacts of de novo,
noncoding mutations. The modeling of the regulatory potential
of individual base pairs was crucial to enable the identification
of these putative causal mutations, as simple overlap with
open chromatin regions did not provide the required specificity.
We observed enrichments of mutations in ASD cases versus
controls that approached levels observed for deleterious pro-
tein-coding mutations (An et al., 2018). We anticipate that as
more large-scale ATAC-seq and RNA-seq datasets across
development become available, similar approaches will allow
accurate interpretation of gene-regulatory impacts of noncoding
de novo mutations associated with other developmental
disorders.

Limitations of the study
Although these data span 8 weeks of mid-gestation, an analysis
at earlier and later time points would allow further study of glio-
genesis and neuronal maturation and, for instance, connect
astrocyte precursors to adult subtypes. Of particular interest
would be to employ rapidly advancing lineage tracing methods
to resolve developmental trajectories identified here. While the
multiome data validatemany key inferences, the use of data inte-
gration inferences to connect singleome ATAC-seq with RNA-
seq and to infer lineage relationships between cells is a limitation
of this study. Furthermore, our cell-specific models consider im-
pacts of variants on peaks present only in that particular cell
type. Therefore, these cell-type-specific models likely trade
greater significance, afforded by scoring larger sets of overlap-
ping mutations in pseudobulk peak calls, for a deeper under-
standing of the specific cell types affected by the variants.
Finally, confirming the deleterious nature of noncoding de novo
mutations prioritized in this study will require molecular valida-
tion in the cognate cell types.
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